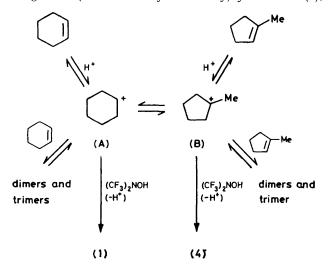
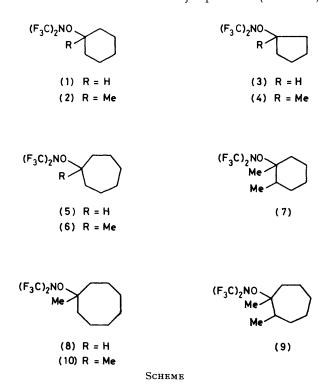
Nitroxide Chemistry. Part 20.¹ *N*,*N*-Bis(trifluoromethyl)hydroxylamine as a Carbocation Trapping Agent


By Brian L. Booth,* Robert N. Haszeldine, and Chukwuemeka A. Nwadinigwe, Department of Chemistry, University of Manchester Institute of Science and Technology, Manchester M60 1QD

Aliphatic and alicyclic alkenes and alcohols react with an excess of *N*,*N*-bis(trifluoromethyl)hydroxylamine in the presence of either a catalytic or a stoicheiometric amount of 98% sulphuric acid to give (bistrifluoromethylamino-oxy)-derivatives in good yields. Under the conditions of these reactions, products arising from carbocation rearrangement are obtained from cycloheptene, 1-methylcycloheptene, cyclo-octene, 1-methylcyclo-octene, 3methylbutan-2-ol, 2-methylbut-1-ene, 2-methylpent-1-ene, and 4-methylpent-1-ene, but not from cyclopentene, 1-methylcyclopentene, cyclohexene, 1-methylcyclohexene, or norbornene. Norbornadiene gives 3- (bistrifluoromethylamino-oxy)nortricyclene as the major product, together with *exo*-5- (bistrifluoromethylamino-oxy)norborn-2-ene. 2,2- (Bistrifluoromethylamino-oxy)butane is the sole product from the reaction of but-2-yne.


INTEREST in N_N -bis(trifluoromethyl)hydroxylamine² has centred mainly on its oxidation to the stable radical bis(trifluoromethyl)nitroxide.³⁻⁵ the formation of complexes with amines ⁶ and caesium fluoride,⁷ and the fact that, being a weak acid,⁷ it can be converted into a sodium salt on treatment with sodium hydroxide,² or sodium hydride.⁸ The isolated observation in 1975⁹ that the hydroxylamine reacts with isobutene in the presence of sulphuric acid to give 2-(bistrifluoromethylamino-oxy)-2-methylpropane in 85% yield suggested that trapping of a carbocation by (CF₃)₂NOH could provide an efficient route to (CF₃)₂NO-substituted hydrocarbons. Previously this type of compound has been prepared by attack of bistrifluoromethylnitroxide on acyclic and alicyclic alkanes, but complex product mixtures are frequently observed due to disubstitution and formation of carbonyl compounds.^{9,10} We now describe some reactions of alkenes and alcohols with the hydroxylamine in the presence of 98% sulphuric acid.

RESULTS AND DISCUSSION

Dropwise addition of cyclohexene into a mixture of N,N-bis(trifluoromethyl)hydroxylamine (2 mol equiv.) and 98% sulphuric acid (1 mol equiv.) at room temperature gave bis(trifluoromethylamino-oxy)cyclohexane (1),

together with a small amount of a dark-brown oil shown by ¹H n.m.r. spectroscopy and mass spectrometry to be a mixture of dimers and some trimers of cyclohexene. The yield of (1) was 90% after 8 h, and this did not improve significantly after a further 28 h. When a catalytic amount of acid was used under similar conditions the yield of (1) was reduced considerably, and the alkene telomers became the major products (see Table).

Under conditions of high acid concentration the concentration of cyclohexyl cation will increase and that of the cyclohexene will decrease favouring capture of the carbocation by the hydroxylamine, which is not protonated even in strongly acidic media (see Scheme). At low acid concentration the more nucleophilic alkene competes effectively for the carbocation even though the hydroxylamine is still present in slightly more than 2:1 molar excess. Under similar conditions of low acid concentration 1-methylcyclohexene gives a high yield of 1-(bistrifluoromethylamino-oxy)-1-methylcyclohexane (2), reflecting the increased stability of the tertiary carbocation. Similar trends can be seen in the results obtained with cyclopentene and methylcyclopentene which give bis(trifluoromethylamino-oxy)cyclopentane (3) and 1-(bistrifluoromethylamino-oxy)-1-methylcyclopentane (4), respectively (see Table). In none of the reactions of cyclohexene, 1-methylcyclohexene, and 1methylcyclopentene was there any evidence of Wagner-Meerwein rearrangement products. The interconversion of the methylcyclopentyl cation (A) (see Scheme) and the cyclohexyl cation (B) is a well studied reaction in strong acid media,¹¹ and $\Delta H^{\ddagger}_{B\to A}$ is ca. 17–18 kcal mol⁻¹.* A recent calorimetric study ¹² suggests that the tertiary cation (B) may only be 5-6 kcal mol⁻¹ more stable than the secondary cation (A), implying a value of $\Delta H^{\ddagger}_{A \rightarrow B}$ of 12—13 kcal mol⁻¹. There are many approximations implicit in arriving at this value, but the results suggest that rearrangement reactions having ΔH^{\ddagger} values of this magnitude will be quenched by $(CF_3)_2$ NOH under the conditions employed. It is noticeable that cycloheptene under conditions of both low and stoicheiometric acid concentrations gives a mixture of (bistrifluoromethylamino-oxy)cycloheptane (5) and the rearrangement product 1-(bistrifluoromethylamino-oxy)-1-methylcyclohexane (2). This implies that ΔH^{\ddagger} for the rearrangement of cycloheptyl cation to 1-methylcyclohexyl cation is considerably less than $\Delta H^{\ddagger}_{A \rightarrow B}$. Accurate data are not available for the relative energies of the cycloheptyl and 1-methylcyclohexyl cations, but if the increase in strain energy on going from a C_6 to a C_7 ring is similar in magnitude to that determined for cyclohexane and methylcyclohexane (*i.e.* ca. 7 kcal mol⁻¹),¹³ then the 1-methylcyclohexyl cation could be at least 12 kcal mol⁻¹ more stable than the cycloheptylium ion. This could have the effect of reducing ΔH^{\ddagger} for the cycloheptyl to methylcyclohexyl cation rearrangement to <10 kcal mol⁻¹. A mixture of 1-(bistrifluoromethylamino-oxy)-1methylcycloheptane (6) and the rearrangement product 1-(bistrifluoromethylamino-oxy)-1,2-dimethylcyclohexane (7) is also obtained from the reaction between 1methylcycloheptene and (CF₃)₂NOH with a catalytic amount of sulphuric acid. Cyclo-octene, under similar conditions, gives mainly 1-(bistrifluoromethylaminooxy)cyclo-octane (8) and some 1-(bistrifluoromethylamino-oxy)-1-methylcycloheptane (6), together with a trace of a second rearrangement product believed to be 1-(bistrifluoromethylamino-oxy)-1,2-dimethylcyclohexane (7). The rearrangement product 1-(bistrifluoromethylamino-oxy)-1,2-dimethylcycloheptane (9) and 1-(bistrifluoromethylamino-oxy)-1-methylcyclo-octane (10)have also been isolated from the reaction of 1-methylcyclo-octane. These results imply that the ΔH^{\ddagger} values for the rearrangement of a cyclic secondary C₈ cation to a cyclic tertiary C_7 cation and of a cyclic tertiary C_8 cation * 1 cal = 4.184 J.

to a cyclic tertiary C_7 cation are both small, and probably <10 kcal mol⁻¹.

Norbornene reacts with (CF₃)₂NOH and sulphuric acid (molar ratio 1:2:1) at room temperature to give mainly exo-2-(bistrifluoromethylamino-oxy)norbornane (11) and only a trace of the endo-isomer (12). This product distribution is similar to those reported for additions of hydrogen chloride¹⁴ and acetic acid¹⁵ to norbornene. Reaction between norbornadiene and (CF₃)₂NOH (molar ratio 1:2) in the presence of a catalytic amount of sulphuric acid gives 3-(bistrifluoromethylamino-oxy)nortricyclene (13) as the major product, together with *exo*-5-(bistrifluoromethylamino-oxy)norborn-2-ene (14). An increase in the molar ratio of norbornadiene to hydroxylamine to 1: 4 caused no significant change in the product distribution. Surprisingly, when the reaction between norbornadiene and $(CF_3)_2NOH$ (molar ratio 1:2) was carried out under conditions of high acid concentration (1 mol equiv. of H_2SO_4), the major product was a dark brown oil, shown by i.r. spectroscopy and mass spectrometry to be mainly dimers of norbornadiene having some $(CF_3)_2$ NO- groups incorporated, and mixed with trimers and tetramers of the diene; the yield of (13) from this reaction was <2% and 74% of the hydroxylamine was recovered. Authentic samples of compounds (13) and (14) were synthesised by reaction of a mixture containing 5-chloronorborn-2-ene (76%) and 3-chloronortricyclene (24%) with di(bistrifluoromethylamino-oxy)mercury.

Secondary and tertiary, but not primary, alcohols can also be used for these reactions with N,N-bistrifluoromethylhydroxylamine (see Table). A 76% yield of 2-(bistrifluoromethylamino-oxy)-2-methylpropane is obtained from 2-methylpropan-2-ol and the hydroxylamine in the presence of sulphuric acid at room temperature. Under similar conditions 2-methylpropan-1-ol gave < 1%yield of the same product and 99% of the starting materials were recovered. The major isomer from 3methylbutan-2-ol was the rearrangement product 2-(bistrifluoromethylamino-oxy)-2-methylbutane (15) and the yield of 2-(bistrifluoromethylamino-oxy)-3-methylbutane (16) was only 14%. Compound (15) has been prepared in almost quantitative yield by reaction of 2methylbut-1-ene and (CF₃)₂NOH in the presence of sulphuric acid. Enthalpy data for the cations Me₂CH-ČHMe and Me₂ČCH₂Me are not available, but it seems reasonable that their relative energies will be close to those of the t-butyl and s-butyl cations. Experimental determination by two independent methods 16, 17 indicates that in solution the s-butyl cation is ca. 14.5 kcal mol⁻¹ less stable than the t-butyl cation. Isomerization of the initially formed cation Me₂CHCHMe to the cation Me₂CCH₂Me involves an extremely facile secondary-

tertiary 1,2-H shift (ΔH^{\ddagger} 3—4 kcal mol⁻¹ ¹⁸), and it is not surprising that this cannot be quenched in the presence of (CF₃)₂NOH. Conversely, the isomerisation of Me₂-ČCH₂Me to Me₂CHČHMe will have an energy barrier of *ca*. 17 kcal mol⁻¹, accounting for the virtual absence of

compound (19) among the products from 2-methylbut-1ene. For similar reasons 2-methylpent-1-ene gives a 98% yield of 2-(bistrifluoromethylamino-oxy)-2-methylpentane (17), and only a trace of 3-(bistrifluoromethylamino-oxy)-2-methylpentane (18). In the reaction of 4methylpent-1-ene with (CF₃)₂NOH the initially formed cation Me₂CHCH₂ĊHMe can undergo a rapid secondarysecondary cation 1,2-H shift (ΔH^{\ddagger} 2-4 kcal mol⁻¹¹⁸) to the ion Me₂CHCHCH₂Me, which can rearrange further either by a secondary-tertiary 1,2-H shift (ΔH^{\ddagger} 3-4 kcal mol^{-1 14}) to $Me_2CCH_2CH_2Me$, or by a methide shift $(\Delta H^{\ddagger} 3-4 \text{ kcal mol}^{-1 18})$ to MeCHCHMeCH₂Me. These reactions are too fast to be quenched by $(CF_3)_2NOH$ and the product mixture contained mainly compound (17), and smaller amounts of (18) and 2-(bistrifluoromethylamino-oxy)-4-methylpentane (19), under conditions of both catalytic and stoicheiometric acid concentrations.

But-2-yne reacts slowly with N,N-bistrifluoromethylhydroxylamine in the presence of sulphuric acid (molar ratio 1:2:1), and after 4 days at room temperature gives 2,2-(bistrifluoromethylamino-oxy)butane (20) in 81% yield. G.l.c. monitoring of this reaction showed no evidence for the intermediate formation of MeCH=CMe-[ON(CF₃)₂], implying that this is protonated rapidly under the reaction conditions.

EXPERIMENTAL

N,N-Bistrifluoromethylhydroxylamine ¹⁹ and di(bistrifluoromethylamino-oxy)mercury(II) ²⁰ were prepared by previously reported procedures. Cycloheptene ²¹ and 1methylcyclopentene ²¹ were synthesised by dehydration of the corresponding alcohols; other alkenes used were commercial samples purified by passage down a column of activated alumina followed by distillation and storage over sodium.

Typical Procedure for the Reactions of N,N-Bistrifluoromethylhydroxylamine with Alkenes and Alcohols.—The alkene or alcohol was added dropwise over 3-4 h to a magnetically stirred mixture of 98% sulphuric acid and N,N-bistrifluoromethylhydroxylamine contained in a 200 cm³ three-necked flask fitted with a cold-finger condenser maintained at -78 °C. Volatile products were transferred to a conventional vacuum apparatus and were separated by fractional condensation through traps cooled at -42, -78, -130, and -196 °C. The products collected in the -42 and -78 °C traps and pure samples were obtained by preparative g.l.c. (Pye 104 instrument, 4 m SE 30 or 5 m TXP columns), before examination by i.r. spectroscopy (Perkin-Elmer 257 spectrophotometer), n.m.r. (Perkin-Elmer R20 or R32 or Varian HA 100 spectrometers; ¹⁹F n.m.r. chemical shifts are in p.p.m. to low field of external trifluoroacetic acid), and mass spectrometry (AEI MS 902 instrument). The results are given in the Table and the products were identified from the following data. (Bistrifluoromethylamino-oxy)cyclohexane (1) ²² (Found: C, 38.05; H, 4.3; F, 45.35; N, 5.65. C₈F₆H₁₁NO requires C, 38.25; H, 4.44; F, 45.4; N, 5.6%; ¹H n.m.r. δ (CDCl₃; p.p.m. to low field of external Me₄Si) 0.9-1.9 (10 H, complex multiplet, CH₂), 3.65 (1 H, br, CH); ¹⁹F n.m.r. $\delta - 9.05$ (s); m/z(no molecular ion) 83 { $[M - (CF_3)_2NO]^+$, 95.4%}, 69 [$(CF_3)^+$ and $(C_5H_9)^+$, 25.2%], and 55 $[(C_4H_7)^+$, 100%].

1-(Bistrifluoromethylamino-oxy)-1-methylcyclohexane (2) ²² (Found: C, 40.9; H, 5.2; F, 42.9; N, 5.5. $C_9F_6H_{13}NO$ requires C, 40.8; H, 4.9; F, 43.0; N, 5.3%; ¹H n.m.r. δ (neat liquid; p.p.m. relative to external *p*-dichlorobenzene) +5.2 to +5.6 (10 H, complex m, CH₂) and +5.8 (3 H, s, CH₃); ¹⁹F n.m.r. δ -11.45 (s); *m/z* (no parent ion) 97 {[$M - (CF_3)_2NO$]⁺, 93.5%}, 69 [(CF_3)⁺ and (C_5H_9)⁺, 56.0%], 55 [(C_4H_7)⁺, 100%], 43 [(C_3H_7)⁺, 88.3%], and 41 [(C_3H_5)⁺, 38.2%].

				Alkene		
	98% H ₂ SO ₄	(CF ₃) ₂ NOH	Reaction	Conversion	1 : 1 Adducts	Telomers
Cycloalkene (mmol)	(mmol)	(mmol)	time (h)	(%) <i>ª</i>	[%] *	(%) ^ø
Cyclohexene (48.77)	0.18	58.17	36	72	(1) [20]	50
Cyclohexene (50.0)	50.0	100.0	8	99	(1) [90]	8
Cyclohexene (50.0)	50.0	100.0	36	99	(1) [94]	5
1-Methylcyclohexene (50.0)	0.18	100.0	6	82	(2) [66]	34
Cyclopentene (50.0)	0.18	100.0	6	70	(3) [50]	50
Cyclopentene (50.0)	50.0	100.0	6	99	(3) [90]	10
1-Methylcyclopentene (49.15)	0.18	61.42	36	60	(4) [22]	78
1-Methylcyclopentene (43.0)	0.18	148.0	6	65	(4) [83]	17
1-Methylcyclopentene (50.0)	50.0	100.0	6	86	(4) [61]	38
Cycloheptene (50.0)	0.18	100.0	6	84	(5) [65], (2) [10]	20
Cycloheptene (50.0)	50.0	100.0	6	99	(5) $[78]$, (2) $[17]$	5
1-Methylcycloheptene (6.36)	0.1	12.72	6	89	(6) [75], (7) [15]	9
Cyclo-octene (50.0)	0.18	100.0	6	92	(8) [81], (6) [11],	7
•					(7) [trace]	
1-Methylcyclo-octene (14.52)	0.1	28.99	6	83	(9) [8], (10) [76]	16
Norbornene (50.0)	50.0	100.0	6	97	(11) [81], (12) [≤ 1]	18
Norbornadiene (50.0)	0.18	100.0	6	67	(13) [77], (14) [17]	6
Norbornadiene (50.0)	50.0	100.0	6	100	(13) [2]	98
Norbornadiene (37.5)	0.18	150.0	0.5	42	(13) $[80]$, (14) $[18]$	2
3-Methylbutan-2-ol (50.0)	50.0	100.0	6	90	(15) [75], (16) [14]	11
2-Methylbut-1-ene (50.0)	50.0	100.0	6	99	(15) [99], (16) [<1]	<1
2-Methylpent-1-ene (50.0)	0.18	100.0	6	99	(17) [98], (18) [1]	1
4-Methylpent-1-ene (50.0)	0.18	100.0	6	34	(17) [93], (18) [1]	4
					(19) [2]	
4-Methylpent-1-ene (50.0)	50.0	100.0	6	88	(17) [48], (18) [10]	29
					(19) [7] •	

⁶ Based on alkene recovered. ^b Based on alkene consumed. ^c Two other $(CF_3)_2NO$ -substituted compounds of molecular formula $C_8H_{13}F_6NO$ were also detected in the mixture from this reaction.

(Bistrifluoromethylamino-oxy)cyclopentane (3) ²² (Found: C, 35.6; H, 4.1; N, 6.0; F, 48.6. $C_7F_6H_9NO$ requires C, 35.4; H, 3.8; N, 5.9; F, 48.1%); ¹H n.m.r. δ (neat liquid; p.p.m. relative to external *p*-dichlorobenzene) +2.56 (1 H, br, CH) and +5.1 to +5.7 (8 H, complex m, CH₂); ¹⁹F n.m.r. δ -9.5 (s); m/z 237 (M^{++} , 0.1%), 69 [(CF₃)⁺ and (C_5H_9)⁺, 100%], and 41 [(C_3H_5)⁺, 75.7%].

1-(Bistrifluoromethylamino-oxy)-1-methylcyclopentane (4) ²² (Found: C, 37.7; H, 4.3; F, 44.1; N, 5.5. $C_8F_6H_{11}NO$ requires C, 38.25; H, 4.4; F, 45.4; N, 5.6%); ¹H n.m.r. (neat liquid; p.p.m. relative to external *p*-dichlorobenzene) +5.1 to +5.8 (8 H, complex m, CH₂) and +5.9 (3 H, s, CH₃); ¹⁹F n.m.r. δ -11.1 (s); *m/z* (no molecular ion) 83 {[$M - (CF_3)_2NO$]⁺, 98.2%}, 69 [(CF₃)⁺ and (C_5H_9)⁺, 43.1%], 55 [(C_4H_7)⁺, 82.6%], 43 [(C_3H_7)⁺, 100%], and 41 [(C_3H_5)⁺, 64.9%]. This compound was identical with that obtained in 74% yield from the reaction of 1-chloro-1methylcyclopentane (20 mmol) and di(bistrifluoromethylamino-oxy)mercury (17 mmol) at room temperature.

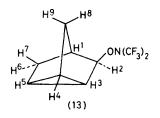
(Bistrifluoromethylamino-oxy)cycloheptane (5),²² ¹H n.m.r. δ (neat liquid; p.p.m. relative to external *p*-dichlorobenzene) +2.98 (1 H, br, CH) and +4.9 to +5.9 (12 H, complex m, CH₂); ¹⁹F n.m.r. δ -10 (s); *m/z* (no molecular ion) 97 {[$M - (CF_3)_2NO$]⁺, 58.0%}, 69 [(CF₃)⁺ and (C₅H₉)⁺, 19.8%], 55 [(C₄H₇)⁺, 100%], 43 [(C₃H₇)⁺, 13.4%], and 41 [(C₃H₅)⁺, 31.0%].

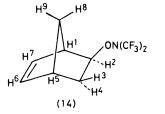
1-(Bistrifluoromethylamino-oxy)-1-methylcycloheptane (6), ¹H n.m.r. δ (neat liquid; p.p.m. to low field of external Me₄Si) 1.3 (3 H, s, CH₃) and 1.6 (12 H, complex m, CH₂); ¹⁹F n.m.r. δ –13.2 (s); m/z (no molecular ion) 111 {[M – (CF₃)₂NO]⁺, 57.4%}, 97 [(C₇H₁₃)⁺, 18.7%], 69 [(CF₃)⁺ and (C₅H₉)⁺, 100%], 55 [(C₄H₇)⁺, 72.5%], 43 [(C₃H₇)⁺, 94.3%], and 41 [(C₃H₅)⁺, 49.3%].

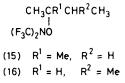
1-{Bistrifluoromethylamino-oxy}-1,2-dimethylcyclohexane (7), m/z (no molecular ion) 111 {[$M - (CF_3)_2NO$]⁺, 4.8%}, 96 [$(C_7H_{12})^+$, 1.8%], 95 [$(C_7H_{11})^+$, 30.2%], 82 [$(C_6H_{10})^+$, 12.4%], 81 [$(C_6H_9)^+$, 23.4%], 79 [$(C_6H_7)^+$, 11.0%], 71 [$(C_5H_{11})^+$, 100%], 55 [$(C_4H_7)^+$, 31.4%], 43 [$(C_3H_7)^+$, 75.4%], and 41 [$(C_3H_5)^+$, 43.5%].

Bis(trifluoromethylamino-oxy)cyclo-octane (8), ¹H n.m.r. δ (neat liquid; p.p.m. relative to external *p*-dichlorobenzene) +2.98 (1 H, br, CH), +5.23 (4 H, complex m, CH₂), and +5.52 (10 H, br, s, CH₂); ¹⁹F n.m.r. δ -10 (s); *m/z* (no molecular ion) 111 {[$M - (CF_3)_2NO$]⁺, 25.1%}, 69 [(CF₃)⁺ and (C₅H₉)⁺, 100%], 55 [(C₄H₇)⁺, 51.7%], 43 [(C₃H₇)⁺, 12.2%], and 41 [(C₃H₅)⁺, 37.5%].

1-(Bistrifluoromethylamino-oxy)-1,2-dimethylcycloheptane (9), m/z (no molecular ion) 125 {[$M - (CF_3)_2NO$]⁺, 44.1%}, 109 [(C_8H_{13})⁺, 2.5%], 69 [(CF_3)⁺ and (C_5H_9)⁺, 93.9%], 55 [(C_4H_9)⁺, 59.9%], 43 [(C_3H_7)⁺, 100%], 41 [(C_3H_5)⁺, 44.3%].


1-(Bistrifluoromethylamino-oxy)-1-methylcyclo-octane (10), ¹H n.m.r. δ (neat liquid, p.p.m. to low field of external Me₄Si) 1.22 (3 H, singlet, CH₃) and 1.34 to 2.26 (14 H, complex m, CH₂); ¹⁹F n.m.r. δ –11.75 (s); *m/z* (no molecular ion) 125 {[$M - (CF_3)_2NO$]⁺, 32.8%}, 109 [(C₈H₁₃)⁺, 4.1%], 83 [(C₆H₁₁)⁺, 34.2%], 69 [(C₅H₉)⁺ and (CF₃)⁺, 81.1%], 55 [(C₄H₇)⁺, 52.7%], 43 [(C₃H₇)⁺, 100%], and 41 [(C₃H₅)⁺, 40.8%].


exo-2-(Bistrifluoromethylamino-oxy)norbornane (11) ²² (Found: C, 40.9; H, 4.1; F, 43.2; N, 5.4. $C_9F_6H_{11}NO$ requires C, 41.1; H, 4.2; F, 43.4; N, 5.3%); ¹H n.m.r. δ (neat liquid; p.p.m. to low field of external Me₄Si) 1.08 (2 H, t, 10-H and 11-H), 1.28 to 1.72 (6 H, complex m, 3-H, 4-H, 5-H, 6-H, 8-H, and 9-H), 2.25 (1 H, s, 7-H), 2.51 (1 H, s, 2-H), and 4.0 (1 H, t, 1-H); ^{19}F n.m.r. δ –9.6 (s); m/z (no molecular ion) 95 {[M – (CF₃)₂NO]⁺, 100%}, 81 [(C₆H₉)⁺, 1.7%], 67 [(C₅H₇)⁺, 39.2%], 53 [(C₄H₅)⁺, 3.9%], and 39 [(C₃H₃)⁺, 8.0%].


endo-2-(Bistrifluoromethylamino-oxy)norbornane (12),²² m/z (no molecular ion) 95 {[$M - (CF_3)_2NO$]⁺, 100%}, 81 [(C_6H_9)⁺, 2.3%], 67 [(C_5H_7)⁺, 41.4%], 53 [(C_4H_5)⁺, 4.5%], and 39 [(C_3H_3)⁺, 10.5%].

3-(Bistrifluoromethylamino-oxy)nortricyclene (13) (Found: C, 41.0; H, 3.7; F, 43.4; N, 5.5. $C_9F_6H_9NO$ requires C, 41.4; H, 3.5; F, 43.6; N, 5.35%); ¹H n.m.r. δ (neat liquid; p.p.m. relative to external *p*-dichlorobenzene) +2.8 (1 H, s, 2-H), +5.01 (2 H, m, 1-H and 4-H), and +5.65 (6 H, m, 3-H, 5-H, 6-H, 7-H, 8-H, and 9-H), ¹⁹F n.m.r. δ -9.8 (s); *m*/*z* 261 (*M*⁺⁺ 0.2%), 93 {[M - (CF₃)₂-NO]⁺, 100%}, 91 [(C₇H₇)⁺, 39.5%], 81 [(C₆H₉)⁺, 10.4%], 79 [(C₆H₇)⁺, 16.6%], 77 [(C₆H₅)⁺, 41.9%], 69 [(C₅H₉)⁺ and (CF₃)⁺, 18.8%], 66 [(C₅H₆)⁺, 7.3%], 41 [(C₃H₅)⁺, 11.3%], and [(C₃H₃)⁺, 100%].

H¹ H⁴ H³ H⁶ (11) R¹ = ON(CF₃)₂, R² = H (12) R¹ = H, R² = ON(CF₃)₂

$$\begin{array}{cccc} CH_{3}CMeCHCH_{2}CH_{3} & CH_{3}CHCH_{2}CHMeCH_{3} \\ | & | & | \\ R^{1} & R^{2} & (F_{3}C)_{2}NO \end{array}$$

$$(17) \ R^{1} = \ ON(CF_{3})_{2}, \ R^{2} = H \qquad (19)$$

$$(18) \ R^{1} = \ H, \ R^{2} = \ ON(CF_{3})_{2}$$

$$CH_3CCH_2CH_3$$

 $F_3C)_2NO ON(CF_3)_2$
(20)

(

exo-5-(Bistrifluoromethylamino-oxy)norborn-2-ene (14), ¹H n.m.r. δ (CCl₄; p.p.m. to low field of external Me₄Si) 1.4 to 2.0 (4 H, m, 3-H, 4-H, 8-H, and 9-H), 2.9 (2 H, m, 1-H and 5-H), 3.67 (1 H, m, 2-H), and 6.05 (2 H, m, 6-H and 7-H); ¹⁹F n.m.r. δ -11.12 (s); m/z 261 (M^{+*} , 0.6%), 93 {[M -(CF₃)₂NO]⁺, 52.4%}, 91 [(C₇H₇)⁺, 19.5%], 79 [(C₆H₇)⁺, 15.5%], 77 $[(C_6H_5)^+, 22.0\%]$, 69 $[(CF_3)^+$ and $(C_5H_9)^+$, 40.1%], 67 $[(C_5H_7)^+, 19.6\%]$, 66 $[(C_5H_6)^+, 100\%]$, 65 $[(C_{5}H_{5})^{+}, 12.3\%], 41 [(C_{3}H_{5})^{+}, 10.6\%], and 39 [(C_{3}H_{3})^{+},$ 13.4%].

2-(Bistrifluoromethylamino-oxy)-2-methylbutane (15)showed spectroscopic data identical with those reported previously.10

2-(Bistrifluoromethylamino-oxy)-3-methylbutane (16),m/z 239 $(M^{+*}, 0.5\%)$, 223 { $[M - CH_3]^+$, 0.4%}, 196 $\{[M - C_3H_7]^+, 3.9\%\}, 71 \{[M - (CF_3)_2NO]^+, 8.7\%\}, 69 [(CF_3)^+ and (C_5H_9)^+, 21.5\%], 57 [(C_4H_9)^+, 18.3\%], 55$ $[(C_4H_7)^+, 9.6\%], 43 [(C_3H_7)^+, 100\%], 41 [(C_3H_5)^+, 34.5\%],$ and 39 $[(C_3H_3)^+, 10.8\%]$.

2-(Bistrifluoromethylamino-oxy)-2-methylpentane (17), ¹H n.m.r. δ (neat liquid; p.p.m. relative to external pdichlorobenzene) +5.44 to +5.86 (4 H, A_2B_2 m, CH_2CH_2), +5.91 [6 H, s, (CH₃)₂C], and +6.25 (3 H, t, CH₃CH₂, J 7 Hz); ¹⁹F n.m.r. δ -11.4 (s); m/z (no molecular ion) 238 $[(M - CH_3)^+, 23.1\%], 210 [(M - C_3H_7), 57.7\%], 85$ $\{[M - (CF_3)_2NO]^+, 45.0\%\}, 71 [(C_5H_{11})^+, 10.8\%],$ 69 $[(\mathrm{CF_3})^+ \text{ and } (\mathrm{C_5H_9})^+, \ 23.6\%], \ 58 \ [(\mathrm{C_4H_{10}})^+, \ 44.5\%], \ 57$ $[(C_4H_9)^+, 13.7\%]$, and $[(C_3H_7)^+, 100\%]$.

3-(Bistrifluoromethylamino-oxy)-2-methylpentane (18), ¹H n.m.r. δ (CCl₄; p.p.m. relative to external *p*-dichlorobenzene) +3.47 [1 H, q, CHON(CF₃)₂, J 7 Hz], +5.06 [1 H, m, $CH(CH_3)_2$], + 5.5 (2 H, q, CH_2CH_3 , J 7 Hz), +5.87 [6 H, d, $(CH_3)_2$ CH, J 7 Hz], and +6.2 (3 H, t, CH_3 CH₂); ¹⁹F n.m.r. $\delta = 12.6$ (s); m/z (no molecular ion) 224 [(M = 12.6 (s); m/z)] C_2H_5)⁺, 7.8%], 210 [($M - C_3H_7$)⁺, 21.1%], 85 {[$M - (CF_3)_2$ -NO]⁺, 12.6%, 71 [(C_5H_{11})⁺, 7.0%], 69 [(CF_3)⁺ and (C_5H_9)⁺ 22.1%], 58 [(C_4H_{10})⁺, 34.4%], 57 [(C_4H_9)⁺, 55.5%], and 43 $[(C_{3}H_{7})^{+}, 100\%]$

2-(Bistrifluoromethylamino-oxy)-4-methylpentane (19), ¹H n.m.r. δ (CCl₄; p.p.m. relative to *p*-dichlorobenzene) +3.1 [1 H, quint, CHON(CF₃)₂], +5.4 [1 H, sept, CH- $(CH_3)_2$, J 2 Hz], +5.7 (2 H, m, CH_2), +5.9 (3 H, d, $(CH_3)_2$ -CH], +6.28 (3 H, doublet, $(CH_3)_2$ CH], and +6.28 (3 H, d, $CH_{3}CH_{1}$ / 7 Hz); ¹⁹F n.m.r. $\delta - 11.3$ (s); m/z (no molecular ion) 252 $[(M - H)^+, 9.1\%]$, 238 $[(M - CH_3)^+, 3.3\%]$, 210 $[(M - C_3H_7)^+, 67.4\%], 85 \{[M - (CF_3)_2NO]^+, 1.7\%\}, 72$ $[(C_5H_{12})^+, 10.9\%], 69 [(CF_3)^+ \text{ and } (C_5H_9)^+, 10.5\%], 58$ $[(C_4H_{10})^+, 55.2\%], 57 [(C_4H_9)^+, 100\%], 43 [(C_3H_7)^+, 60.6\%],$ and 41 [$(C_3H_5)^+$, 20.3%].

2,2-(Bistrifluoromethylamino-oxy)butane (20), ¹H n.m.r. δ (neat liquid; p.p.m. relative to external p-dichlorobenzene) +5.0 (2 H, q, CH_2CH_3 , J 7 Hz), +5.25 (3 H, s CH₃), and + 6.37 (3 H, t, CH₂CH₃); ¹⁹F n.m.r. δ -7.1 (s); m/z (no molecular ion) 150 [(C₂HF₅NO)⁺, 14.7%], 81 $[(C_2F_3)^+, 20.5\%], 69 [(CF_3)^+, 100\%], and 57 [(C_4H_9)^+,$ 12.6%].

Reaction of a Mixture of 5-Chloronorborn-2-ene and 3-Chloronortricyclene with Di(bistrifluoromethylamino-oxy)mercury(II) .--- A mixture (8.10 g, 63.0 mmol) containing 5chloronorborn-2-ene (76%) and 3-chloronortricyclene (24%) [prepared by bubbling HCl gas during 0.5 h into a solution of norbornadiene (12.0 g, 130.4 mmol) in n-pentane according to a previously reported procedure 23] was added to di-

(bistrifluoromethylamino-oxy)mercury(11) (16.91 g, 31.51 mmol) contained in a Pyrex reaction tube (300 cm³), which was then sealed under vacuum. After 5 days at room temperature the volatile products were distilled by fractional condensation and the components were separated by preparative g.l.c. to give (14) (7.70 g, 29.52 mmol, 78%) and (13) (2.12 g, 8.14 mmol, 22%), having i.r. and n.m.r. spectra identical with those of the compounds isolated from the reaction of norbornene with bistrifluoromethylhydroxylamine.

We thank the University of Nigeria for a Junior Fellowship award (to C. A. N.).

[1/1562 Received, 8th October, 1981]

REFERENCES

¹ Part 19, R. E. Banks, R. N. Haszeldine, and M. B. Murray, J. Fluorine Chem., 1981, 17, 561. ² R. N. Haszeldine and B. J. H. Mattinson, J. Chem. Soc.,

- 1957, 1741.
- ³ W. D. Blackley and R. R. Reinhard, J. Am. Chem. Soc., 1965, 87, 802.
- ⁴ R. E. Banks, R. N. Haszeldine, and T. Myerscough, J. Chem. Soc., Perkin Trans. 1, 1972, 1449. ⁵ A. P. Tomilov, Yu. D. Smirnov, and A. F. Videiko, Electro-
- khimiya, 1966, 2, 603 (Chem. Abstr., 1966, 65, 3343).
- ⁶ G. G. Flaskerud and J. M. Shreeve, Inorg. Chem., 1969, 8, 2066.
- ⁷ J. A. Lott, D. P. Babb, K. E. Pullen, and J. M. Shreeve, Inorg. Chem., 1968, 7, 2593. ⁸ R. E. Banks. R. N. Haszeldine, and R. A. Hughes, un-
- published results.
- R. E. Banks, J. M. Birchall, A. K. Brown, R. N. Haszeldine, and F. Moss, J. Chem. Soc., Perkin Trans. 1, 1975, 2033.
- ¹⁰ R. E. Banks, R. N. Haszeldine, and B. Justin, J. Chem. Soc. C, 1971, 2777.
- ¹¹ D. M. Brouwer and H. Hogeveen, Prog. Phys. Org. Chem., 1972, 9, 179.
- ¹² E. M. Arnett and C. Petro, J. Am. Chem. Soc., 1978, 100, 2563
- P. v. R. Schleyer, J. E. Williams, and K. R. Blanchard,
 J. Am. Chem. Soc., 1970, 92, 2377.
 H. C. Brown and K.-T. Liu, J. Am. Chem. Soc., 1759, 97,
- 600.
- ¹⁵ H. C. Brown and J. H. Kawakami, J. Am. Chem. Soc., 1975,
- 97, 5521. ¹⁶ E. M. Arnett and C. Petro, J. Am. Chem. Soc., 1978, 100,
- ¹⁷ E. W. Bittner, E. M. Arnett, and M. Saunders, J. Am. Chem. Soc., 1976, 98, 3734.
 ¹⁸ M. Saunders and M. R. Kates, J. Am. Chem. Soc., 1978, 100,
- 7082.
- ¹⁹ R. E. Banks and C. Oppenheim, J. Fluorine Chem., 1978, 12, 27.
- ²⁰ H. J. Emeléus, J. M. Shreeve, and P. M. Spaziante, J. Chem. Soc. A, 1969, 431; R. E. Banks, D. R. Choudhury, and
- R. N. Haszeldine, J. Chem. Soc., Perkin Trans. 1, 1973, 1092. ²¹ V. J. Traynelis, W. L. Hergenrother, H. T. Hanson, and
- J. A. Valicenti, J. Org. Chem., 1964, 29, 123. ²² These compounds have been isolated from the reactions of the corresponding cycloalkanes with (CF₃)₂NO; R. E. Banks,
- A. L. Brown, and R. N. Haszeldine, unpublished observations; A. L. Brown, Ph.D. thesis Manchester, 1974.
- ²³ L. Schmerling, J. P. Luvisi, and R. W. Welch, J. Am. Chem. Soc., 1956, 78, 2819.